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Abstract: Motivated by the recent work on a new physical interpretation of quasinormal

modes by Maggiore, we utilize this new proposal to the interesting case of Kerr black hole.

In particular, by modifying Hod’s idea, the resulting black hole horizon area is quantized

and the resulting area quantum is in full agreement with Bekenstein’s result. Furthermore,

in an attempt to show that the area spectrum is equally spaced, we follow Kunstatter’s

method. We propose a new interpretation as a result of Maggiore’s idea, for the frequency

that appears in the adiabatic invariant of a black hole. The derived area spectrum is similar

to that of the quantum-corrected Kerr black hole but it is not equally spaced.
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Since the onset of General Relativity black holes have been a matter of major con-

cern for the scientific community. This interest is twofold. On one hand, black holes are

astrophysical objects whose fingerprints will be observed on recent or future detectors for

gravitational waves e.g. LIGO [1] and VIRGO [2]. On the other hand, black holes have

always been a test bed for any proposed scheme for a quantum theory of gravity. It is

evident that it would be of great importance for quantum gravity (and not only) if the

superficially distinct (astrophysical vs theoretical) aspects could be reconciled. Hod was

one of the first to make such a phenomenological work [3]. He combined the perturbations

of astrophysical black holes with the principles of Quantum Mechanics and Statistical

Physics in order to derive the quantum of the black hole area spectrum. Following this line

of thought, Kerr black holes are the most interesting black hole solutions since from the

astrophysical point of view are the most important ones while from the purely theoretical

point of view are more complicated than the simple Schwarzschild black hole.The metric

of a four-dimensional Kerr black hole given in Boyer-Lindquist coordinates is

ds2 = −
(

1 − 2Mr

Σ

)

dt2 − 4Mar sin2 θ

Σ
dtdϕ +

Σ

∆
dr2

+Σdθ2 + (r2 + a2 + 2Ma2r sin2 θ) sin2 θdϕ2 (1)

where, as always, M is the mass of the black hole, J is the angular momentum of the

black hole, a is the specific angular momentum defined as J/M , Σ = r2 + a2 cos2 θ, and

∆ = r2 − 2Mr + a2. The roots of ∆ are given by

r± = M ±
√

M2 − a2 (2)

where r+ is the radius of the event (outer) black hole horizon and r− is the radius of the

inner black hole horizon. The Kerr black hole is rotating with angular velocity (evaluated

on the event black hole horizon)

Ω =
a

r2
+ + a2

=
J

2M
(

M2 +
√

M4 − J2

) . (3)

Furthermore, the horizon area and the Hawking temperature of Kerr black hole (in gravi-

tational units) are given, respectively, by

A = 4π(r2
+ + a2) = 8π

(

M2 +
√

M4 − J2

)

(4)

and

TH =
r+ − r−

A
=

√
M4 − J2

4πM
(

M2 +
√

M4 − J2

) . (5)

As mentioned before, Hod managed to derive the quantum of the area spectrum using

the Bohr’s Correspondence principle and the complex spectrum of the quasinormal modes

that correspond to the perturbation equation of Schwarzschild black hole. The resulting

quantum was of the form [3]

∆A = 4l2p ln 3 (6)
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where lp is the Planck length. Hod’s idea1 rejuvenated the interest of the research commu-

nity for the quantization of the black hole area spectrum and subsequently for a derivation

of black hole entropy from Statistical Physics. Actually, the aroused interest was strength-

ened by the possible links with loop quantum gravity as proposed by Dreyer2[7].

Some thirty five years ago, by proving that the black hole horizon area is an adiabatic

invariant, Bekenstein showed that the quantum of black hole area is of the form [8]

∆A = 8πl2p . (7)

Adiabatic invariants of a system are quantities which vary very slowly compared to vari-

ations of the external perturbations of the system. Moreover, given a system with energy

E and vibrational frequency ω(E), one can show that the quantity E/ω and therefore

I =

∫

dE

ω(E)
, (8)

is an adiabatic invariant. For the case of black holes, as already said above, Bekenstein

was the first to state that the adiabatic invariants are the black hole horizon areas [9, 10].

Exploiting the idea of adiabatic invariants and the statement by Bekenstein [8], Kun-

statter [11] derived for the d(≥ 4)-dimensional Schwarzschild black hole an equally spaced

entropy spectrum. Key points to Kunstatter’s approach were:

(1) the first law of black hole thermodynamics which for the case of a Schwarzschild black

hole is of the form

dM =
1

4
THdA , (9)

(2) Hod’s proposal that in the asymptotic limit, i.e. the large n limit, the real part of

quasinormal frequencies of the Schwarzschild black hole uniquely fixes the quantum

of the black hole area spectrum, and

(3) the fact that the Bohr-Sommerfeld quantization has an equally spaced spectrum in

the large n limit, i.e.

I ≈ n~ . (10)

Kunstatter viewed the Schwarzschild black hole as a system whose adiabatic invariant takes

the form

I =

∫

dM

ωR

(11)

where dE was set equal to dM and the frequency in the denominator of the integral in equa-

tion (8) was set equal to the real part of the quasinormal frequencies of the Schwarzschild

1Later, it was shown by Natario and Schiappa [4] that Hod’s calculation is not universal since it depends

on the asymptotics of the black hole spacetime under study.
2However, it should be emphasized that the method used by Dreyer for state counting was incorrect and

consequently, Dreyer computed an incorrect value for the Barbero-Immirzi parameter. The correct method

of counting states was proposed by Domagala and Lewandowski [5]. Furthermore, implementing the correct

method Meissner calculated the correct value for Barbero-Immirzi parameter [6] which was between the

upper and lower bounds set in [5].
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black hole which was ωR ∼ TH . Finally, the area spectrum and thus the entropy of the

Schwarzschild black hole were discrete and equally spaced. At that point Kunstatter raised

the interesting question if the aforesaid derivation holds for rotating black holes. In this

direction, Hod studied analytically the quasinormal modes of Kerr black hole [12] and he

concluded that the asymptotic quasinormal frequencies of Kerr black hole are given by the

simple expression

ω = mΩ − i2πTHn (12)

which were in agreement for the case of l = m = 2 with the numerical results derived by

Berti and Kokkotas [13].

Endeavoring to answer Kunstatter’ question we extended his approach [14] to the case

of Kerr black hole using the real part of the quasinormal frequency given in equation (12).

The first law of black hole thermodynamics is now written as

dM =
1

4
THdA + ΩdJ (13)

where the angular velocity is given by equation (3) and obviously the corresponding ex-

pression for adiabatic invariant is now given by the expression

I =

∫

dM − ΩdJ

ωR

. (14)

Equating Bohr-Sommerfeld quantization condition (10) with the adiabatically invari-

ant integral (14) one obtains an area spectrum for the Kerr black hole which although

discrete, is not equidistant. However, it was proven by Bekenstein [8, 9] and others [15, 16]

that the area spectrum of Kerr black hole is discrete and uniformly spaced. Therefore, it

was concluded that the function that was used in the above-mentioned computation as real

part of the asymptotic quasinormal frequencies of Kerr black hole, i.e. expression (12), was

not the correct one. Recent analytical works [17, 18] confirmed older numerical calcula-

tions [19] in which the quasinormal frequencies of a Kerr black hole are of the form

ω(n) = ω̃0 − i

[

4πT0

(

n +
1

2

)]

(15)

where ω̃0 is a function of the black hole parameters and T0 is the effective temperature.

For M2 ≫ J , or equivalently a/M ≈ 0, the effective temperature is

T0(a) ≈ −TH(a = 0)

2
(16)

and TH(a = 0) is the Hawking temperature of the Schwarzschild black hole (henceforth

T Sch
H ). The subscripts of the frequency ω̃ and temperature T in equation (15) denote that

these quantities have been computed by integrating a contour that crosses the real axis

outside the event horizon [18].

Very recently a new physical interpretation for the quasinormal modes of black holes

was given by Maggiore [20]. According to Maggiore’s proposal if one wants to avoid several

problems in the interpretation of quasinormal frequencies when compared with macroscopi-

cal systems, one has to treat a perturbed black hole as a damped harmonic oscillator. Then
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one has to identify as proper frequency of the equivalent harmonic oscillator the following

quasinormal normal frequency

ω0 =
√

ω2
R + ω2

I (17)

which decidedly for the case of long-lived quasinormal modes, i.e. ωI → 0, the frequency

of the harmonic oscillator becomes ω0 = ωR. However, the most interesting case is that

of highly excited quasinormal modes for which ωI ≫ ωR and thus the frequency of the

harmonic oscillator becomes ω0 = ωI . Furthermore, Maggiore proposed that if one wants

to solve or at least alleviate problems that were raised by the Hod’s proposal one has to

employ the ω0 rather than ωR since in order to derive the quantum spectrum of a black hole

using its quasinormal modes, the black hole has to be treated as a collection of damped

harmonic oscillators. In this framework, we consider the transition n −→ n − 1 for a Kerr

black hole. Since we are interested in highly excited black holes, i.e. n is large, the proper

frequency is now ω0 = ωI and thus the absorbed energy using equations (15) and (16) is

∆M = ~ [(ω0)n − (ω0)n−1]

= ~ [(ωI)n − (ωI)n−1] (18)

= −4π~T0 = 2π~T Sch
H . (19)

This change in the black hole mass will create a change in the black hole area of the form

∆A = 32πM∆M (20)

and substituting the change of black hole mass as given by equation (19), the change in

the black hole area becomes

∆A = 8π~ = 8πl2p . (21)

A couple of comments are in order here. First, our result for the Kerr black hole is in

full agreement with that for the Schwarzschild black hole given by Maggiore. Second,

we have managed to derive a universal area quantum, i.e. independent of the parameters

that characterize the Kerr black hole. Therefore, the concept of universality for the area

quantum has from now on a twofold meaning. On one hand, it means that the quantum of

the area spectrum is independent of the black hole parameters and on the other hand, it

means that it is the same for the Schwarzschild and Kerr black hole. It should be stressed

that the two meanings are interwoven since the first statement in the limit a → 0 (which

reduces the Kerr black hole to the Schwarzschild black hole) leads us directly to the second

one, and the other way around. It is noteworthy that the change in the area of Kerr black

hole (20) is that of the Schwarzschild black hole. The reason for that is the fact that we

are interested in highly damped quasinormal modes where as stated before ωI ≫ ωR. This

condition implies that M2 ≫ J and therefore the angular part in the formula for the horizon

area change can be neglected. The same condition holds for the effective temperature (16)

of the quasinormal frequency spectrum (15). It seems that the relaxation time τ = ω−1
I is

adequate for the damping to “wash out” the change in the angular momentum (∆J) but

not the change in the mass (∆M).
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Let us now try to derive the quantized area spectrum of the Kerr black hole employing

Kunstatter’s method. Implementing the first law of black hole thermodynamics (13), the

adiabatically invariant integral (8) is now given as

I =

∫

dM − ΩdJ

ω
. (22)

At this point one has to clarify what the frequency ω in the denominator should be. For the

case of a harmonic oscillator, we claimed that this frequency is the vibrational frequency

that corresponds to the system’s energy E for which under a slow variation of a parameter

which is related to the energy, a small variation dE in the energy was created and the

quantity E/ω is an adiabatic invariant. Following Maggiore’s proposal the perturbed black

hole is treated as a set of harmonic oscillators. In the context of this correspondence,

one has to define the cause for the small variations in the mass (∆M) and the angular

momentum (∆J) of the Kerr black hole. According to our previous syllogism, it is evident

that for the case of black holes it is the transitions of type n −→ n−1, where n ≫ 1, which

make the black hole mass and angular momentum vary slowly and thus alter the entropy

of the black hole through the first law of black hole thermodynamics. Therefore, the small

variations in the mass and angular momentum of the black hole stem from the transitions

and for this reason the frequency ω should be the one that corresponds to the absorbed

energy given by equations (18) and (19), i.e. the transition frequency

ω = [(ωI)n − (ωI)n−1] (23)

= 2πT Sch
H . (24)

Therefore, the adiabatic invariant for the Kerr black hole is now written as

I =

∫

dM − ΩdJ
[

2πT Sch
H

] (25)

=
[

2M2 + 2
√

M4 − J2 − 2M2 log
(

M2 +
√

M4 − J2

)]

. (26)

Using the expression for the Kerr black hole horizon area (4), the adiabatic invariant is

rewritten as

I =

[

A

4π
− 2M2 log

(

A

8π

)]

(27)

and implementing the Bohr-Sommerfeld quantization condition (10), the quantized area

spectrum is

An = 4πl2P ln (28)

where An is similar but not the same with the quantum-corrected Kerr black hole horizon

area due to logarithmic corrections (see for instance [21]). The difference stems to the fact

that the logarithmic “prefactor” α is not of order unity but depends on the black hole mass,

i.e. α ≈ M/lP l. The negative sign that accompanies the logarithmic “prefactor” denotes

that the logarithmic correction is of microscopic nature. More importantly, it should be

stressed that since we are working with the highly damped quasinormal modes, i.e. in the
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large n limit, the “prefactor” transforms the logarithmic correction into the dominant term.

This leads to a non-equidistant area spectrum.3

At this point a couple of comments are in order. First, after the present work Medved

showed that if one takes the limit M2 ≫ J (which we introduced for the derivation of

the quantum of the area spectrum, i.e. equation (21)) into account for the computation of

the integral in equation (25), then one ends up with an evenly spaced area spectrum [22].

Second, it is noteworthy that similar arguments for use of the imaginary part of the quasi-

normal frequencies were presented by Kiselev [23]. In addition, Kiselev showed that the

area spectrum for the case of extremal Kerr black hole was identical with the one given here

by equation (28), while for the non-extremal Kerr black hole the results were significantly

different compared to the ones derived in the present analysis.

We have succeeded in deriving the quantum of the area spectrum of Kerr black hole

adopting the new physical interpretation for the black hole quasinormal modes. This

provides a strong evidence in support of the correctness of Maggiore’s proposal. The area

quantum is characterized by universality which has a twofold meaning:

(α) the area quantum of Kerr black hole horizon is independent of its parameters, i.e.

the mass M and the angular momentum J , and

(β) the area quantum of Kerr black hole horizon is identical with the area quantum of

the Schwarzschild black hole as derived by Maggiore.

In addition, it is worth noting that the derived area quantum of Kerr black hole is the same

with the one obtained by Bekenstein who employed the concept of adiabatic invariants.

Finally, we proposed a new interpretation for the frequency of the adiabatic invariant

of a black hole that appears in the context of Kunstatter’s method. This new interpretation

was introduced in order the concept of adiabatic invariant to be incorporated in Maggiore’s

proposal. This identification combined with the new interpretation of Maggiore led us to

obtain in this context the quantized area spectrum of the Kerr black hole. However it

failed to give an equidistant area spectrum since the limit M2 ≫ J was not employed.
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